DIRECTED ORTHO METALATION OF SILYLOXYBENZAMIDES. ANION INDUCED O → C SILICON REARRANGEMENT R.J. Billedeau, M.P. Sibi, V. Snieckus* The Guelph-Waterloo Centre for Graduate Work in Chemistry The University of Waterloo, Waterloo, Canada N2L 3G1

<u>Summary</u>: Trialkylsilyloxybenzamides 4, <u>o</u>- and <u>m</u>-OSiR₃ undergo directed ortho metalationmediated silicon rearrangement to salicylamides <u>6</u>, 6- and 3-OH by intra- and inter-molecular mechanisms respectively.

Metal-halogen exchange of bromo-substituted trialkylsilyl phenols, to a less extent thiophenols, but not anilines, 1 + 2, triggers an anionic 0 + C 1,3-silyl rearrangement to produce corresponding aromatic ring silylated derivatives 3 (Scheme).¹ Evidence from crossover experiments on 1 (X = 0) indicates an intramolecular mechanism for <u>ortho</u>-bromo and an intermolecular pathway for the corresponding <u>para</u>-bromo trialkylphenoxysilanes.² We report preliminary results concerning 0 + C silicon migration of silyloxybenzamides 4 to silylated salicylamides 6 induced by directed ortho metalation (5)³ and provide mechanistic evidence for this rearrangement.⁴

$$X = 0, S; \neq NH, NSIMe_3$$

<u>scheme</u>

4515

In an attempt to develop a general synthesis of 6-substituted salicylamides by <u>in situ</u> phenol protection, N,N-diethylsalicylamide⁵ was 0-metalated (1 equiv <u>s</u>-BuLi/TMEDA/THF/-78°C/ 1 h) and treated with TMSCl (1 equiv) to generate the silyloxybenzamide intermediate <u>4a</u> which was subjected to a second metalation under identical conditions and quenched with an excess of MeI (-78°C + RT). 6-Trimethylsilylsalicylamide (<u>6a</u>) was obtained in 45% yield. A similar result (55% of <u>6a</u>) was observed when the metalation was allowed to proceed for only 10 min and the MeI quench was carried out at -90°C. In order to provide evidence for the 0 + C silicon rearrangement, pure <u>4a</u> was separately prepared⁶ and subjected to the metalation procedure (-78° or -90°C) without adding the external electrophile. This resulted in the formation of the silylated salicylamide <u>6a</u> (68%) together with <u>o</u>-hydroxyvalerophenone (2%) (Table) from NEt₂ displacement by <u>s</u>-BuLi. These experiments suggested that the rate of silicon rearrangement from the ortho-lithiated species derived from <u>4a</u> is very rapid⁷ compared to that of its reaction with methyl iodide.⁸

The triethylsilyloxybenzamide $4b^6$ underwent the silicon rearrangement less cleanly to give compounds 6b and its 0-silylated product while the corresponding <u>t</u>-butyldimethyl derivative underwent extensive decomposition with no evidence for the formation of the rearrangement product <u>6</u>, 2-OH, R = <u>t</u>-BuMe₂.

Silicon rearrangements were also observed for the <u>m</u>- and <u>p</u>-silyloxybenzamides 4c and 4d.^{5,6} Yields of major products <u>6c</u>, <u>6d</u> and <u>6e</u> (bracketed in Table) were only slightly changed by <u>in situ</u> preparation of <u>4c</u> and <u>4d</u>. The results with the <u>m</u>-silyloxybenzamide <u>4c</u> shows poorer regioselectivity for metalation in between the two functions compared to the corresponding <u>m</u>-anisamide.³ The methoxy salicylamide <u>4e</u> smoothly rearranged into the contiguously substituted aromatic <u>6f</u>.

Crossover experiments demonstrated that the rearrangement of 4a proceeds by an intermolecular mechanism. Lithiation of a 1:1 molar ratio of 3-deuterated 4a (95% d_1)⁹ and the triethylsilyloxybenzamide 4b resulted in the formation of 3-deuterated 6a (31%) and 3-deuterated 6b (19%) salicylamides which respectively showed $50\pm5\%$ and $40\pm5\%$ d_1 content at C-3 (400 MHz NMR, MS).¹⁰ An identical crossover experiment using 2-deuterated 4c (84% d_1)¹¹ and N,N-diethyl 3-triethylsilyloxybenzamide resulted in the formation of 2-deuterated 6c (16%)¹¹ and N,N-diethyl 2-triethylsilyloxy-3-hydroxybenzamide (11%) which showed $82\pm5\%$ and $0\pm5\%$ d_1 content respectively thus strongly suggesting that the silicon migration in the

Benzamide	Products b yield, C %							
$ \begin{array}{c} TMSO \\ 3 \\ 4 \\ 5 \\ 4a \\ \hline \end{array} $ NEt2 $ \begin{array}{c} 3 \\ 4 \\ 5 \\ 4a \\ \hline \end{array} $	$ \begin{array}{cccc} & & & & \\ & & & & \\ & & & & \\ & &$							
4b	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	1						
MEt2 OTMS 4 C	$ \begin{array}{c} & \text{NEt}_{2} \\ & \text{I} \\ &$	$\begin{pmatrix} TMS \ NE1_2 \\ O \\ OH \\ \end{pmatrix} \qquad \qquad$						
TMSO 4 d	HO TMS 60 78 (62)	тмз NE ¹ 2 но тмз 11(10)						
	6f (76)							

TABLE. Anionic Silicon Rearrangement of Silyloxy-benzamides^a

^aTMS = SiMe₃, TES = SiEt₃. ^bAll products showed analytical and spectral (IR, NMR, MS) data consistent with the assigned structures. 6a, 6c, and 6f were chemically correlated (MeI/K₂CO₃/acetone) with silylated anisamides prepared by directed ortholithiation-silylation.^{11 C}Yields are of purified (chromatographed, distilled) materials. Yields in brackets correspond to those obtained by <u>in situ</u> preparation of 4a-d and the TMS derivative of 4e. d21% of starting 4a was recovered.

<u>m</u>-silyloxy system 4c occurs via an intramolecular mechanism. These results thus parallel the behavior of p-Br and o-Br silyloxybenzenes 1, X = 0.²

In summary, initial cases of a directed metalation induced 0 + C silicon rearrangement proceeding via inter- and intra-molecular pathways have been observed. Methodological extensions and synthetic applications are under study.¹²

References and Footnotes

1.	Review:	Habich,	D.;	Effenb	erger	, F.	Synthesis,	1979,	841.	Recent work:	Heinicke,	J.;
	Nietzsch	mann, E.	; Tz	schach,	Α.	J. 0	rganometal.	Chem.	1983,	<u>243</u> , 1.		
-					-							

- 2. Simchen, G.; Pfletschinger, J. Angew. Chem. Int. Ed. Engl. 1976, 15, 428.
- 3. Beak, P.; Snieckus, V. Accts. Chem. Research, 1982, 15, 306.
- 4. The n-BuLi induced $0 \rightarrow C$ silicon rearrangement of π -(R₃SiOPh)CrCO₃ complexes constitutes a recent and sole example in which the o-lithiated species in not formed by metal-halogen exchange: Fukui, M.; Ikeda, T.; Iishi, T. <u>Tetrahedron Lett.</u> 1982, 1605.
- Hydroxybenzamide precursor of 4a and 4e were prepared by a new method involving anionic rearrangement of aryl carbamates, see Sibi, M.P.; Snieckus, V. J. Org. Chem. 1983, 48, 1935. Precursors of 4b-d were obtained by BBr3 demethylation (CH₂Cl₂/-78°C) of the corresponding anisamides.
- 6. Compounds 4a, 4c, 4d were prepared from the corresponding phenols (excess HN(SiMe₃)₂/40°C/6 h), distilled (bulb-to-bulb) and, due to moisture sensitivity, used immediately in metalations. 4b was prepared (Et₃SiCl/Et₃N/PhH/reflux) and similarly handled.
- Silicon migration in 2, X = 0, o-Li has been observed even at -100°C: Arai, I.; Park, K.H.; Daves, G.D. J. Organometal. Chem. 1976, 121, 25. For a temperature dependence study, see ref. 2.
- 8. However, interception of 5 by deuteration (EtOD/-78°C + RT) is feasible as evidenced from the formation of N,N-diethyl 6-deuterosalicylamide (80% yield, 80% d₁ by 400 MHz NMR and MS).
- Prepared from N,N-diethyl O-phenylcarbamate by sequential metalation, deuteration, anionic rearrangement⁵ and silylation.⁶
- 10. Analytical standards of 3-deuterated 6a and 6b and 2-deuterated 6c were obtained by separate silicon rearrangement experiments.
- 11. N,N-Diethyl 2-deuterio-5-methoxybenzamide was prepared according to Mills, R.J.; Snieckus, V. J. Org. Chem. 1983, 48, 1565 and converted into 2-deuterio 4c by demethylation⁵ and silylation.⁶
- 12. We thank NSERC Canada for continuing financial support of our research. 400 MHz spectra were obtained at the Southwestern Ontario NMR Centre funded by a major installation grant from NSERC Canada.

(Received in USA 27 June 1983)